A cooperative oxygen binding hemoglobin from Mycobacterium tuberculosis. Stabilization of heme ligands by a distal tyrosine residue.

نویسندگان

  • S R Yeh
  • M Couture
  • Y Ouellet
  • M Guertin
  • D L Rousseau
چکیده

The homodimeric hemoglobin (HbN) from Mycobacterium tuberculosis displays an extremely high oxygen binding affinity and cooperativity. Sequence alignment with other hemoglobins suggests that the proximal F8 ligand is histidine, the distal E7 residue is leucine, and the B10 position is occupied by tyrosine. To determine how these heme pocket residues regulate the ligand binding affinities and physiological functions of HbN, we have measured the resonance Raman spectra of the O(2), CO, and OH(-) derivatives of the wild type protein and the B10 Tyr --> Leu and Phe mutants. Taken together these data demonstrate a unique distal environment in which the heme bound ligands strongly interact with the B10 tyrosine residue. The implications of these data on the physiological functions of HbN and another heme-containing protein, cytochrome c oxidase, are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis.

Two putative hemoglobin genes, glbN and glbO, were recently discovered in the complete genome sequence of Mycobacterium tuberculosis H37Rv. Here, we show that the glbN gene encodes a dimeric hemoglobin (HbN) that binds oxygen cooperatively with very high affinity (P(50) = 0.013 mmHg at 20 degrees C) because of a fast combination (25 microM(-1).s(-1)) and a slow dissociation (0.2 s(-1)) rate. Re...

متن کامل

Unique ligand-protein interactions in a new truncated hemoglobin from Mycobacterium tuberculosis.

A new truncated hemoglobin (HbO) from Mycobacterium tuberculosis has been expressed and purified. Sequence alignment of HbO with other hemoglobins suggests that the proximal F8 residue is histidine and the distal E7 and the B10 positions are occupied by alanine and tyrosine, respectively. The highly conserved residue at the CD1 position, surprisingly, is tyrosine, making HbO the first exception...

متن کامل

Role of PheE15 Gate in Ligand Entry and Nitric Oxide Detoxification Function of Mycobacterium tuberculosis Truncated Hemoglobin N

The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein sur...

متن کامل

NO binding induced conformational changes in a truncated hemoglobin from Mycobacterium tuberculosis.

The resonance Raman spectra of the NO-bound ferric derivatives of wild-type HbN and the B10 Tyr --> Phe mutant of HbN, a hemoglobin from Mycobacterium tuberculosis, were examined with both Soret and UV excitation. The Fe-N-O stretching and bending modes of the NO derivative of the wild-type protein were tentatively assigned at 591 and 579 cm(-1), respectively. Upon B10 mutation, the Fe-NO stret...

متن کامل

Dynamical regulation of ligand migration by a gate-opening molecular switch in truncated hemoglobin-N from Mycobacterium tuberculosis.

Truncated hemoglobin-N is believed to constitute a defense mechanism of Mycobacterium tuberculosis against NO produced by macrophages, which is converted to the harmless nitrate anion. This process is catalyzed very efficiently, as the enzyme activity is limited by ligand diffusion. By using extended molecular dynamics simulations we explore the mechanism that regulates ligand diffusion and, pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 3  شماره 

صفحات  -

تاریخ انتشار 2000